bitcoin源码分析 – 概览

从程序上看,比特币程序采用一个进程多个线程的结构,既是服务器,又是客户端。 如没有特殊说明,本系列以最新源码为准进行分析。 主要模块: 初始化 区块 交易 网络 挖矿 钱包 RPC GUI 主要依赖: berkeley-db boost level db libevent miniupnpc openssl protobuf qrencode qt zmq 主要入口: 文件 函数 bitcoind.cpp main AppInit AppInitMain bitcoin-cli.cpp main AppInitRPC CommandLineRPC CallRPC bitcoin-tx.cpp main AppInitRawTx CommandLineRawTx MutateTx OutputTx 主要线程: 线程 作用 主线程 创建其它线程,等待interrupt ScriptCheck 脚本检查 scheduler 执行一般任务例如定时任务 HTTP Server 提供RPC REST服务接口 import…

Supporting IPv6 DNS64/NAT64 Networks

从6月1日起,苹果审核要求支持IPv6 DNS64/NAT64网络了。 我们服务器和客户端都是Socket编程,IPv4地址。最后参照https://developer.apple.com/library/mac/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html#//apple_ref/doc/uid/TP40010220-CH213-SW1,在客户端处理下即可。 需要说明的是, 在上述文档Apple给出的Listing 10-1  Using getaddrinfo to resolve an IPv4 address literal中,error = getaddrinfo(ipv4_str, “http”, &hints, &res0); 经测试,在IOS下,第一个参数为IPv4地址的情况下,第二个参数为http,ftp等常用字符串,服务器此时监听端口需改为协议默认端口才可能;或者第一个参数为域名,第二个参数为数字端口; 不支持第一个参数为IPv4地址,第二个参数为数字端口。坑爹。有两种方法解决这个问题 : 1) 域名+数字端口。 2) 先getaddrinfo, 再获取sockaddr_in或者sockaddr_in6,设置sin_port或sin6_port。 关于IPv6,可以参考下几篇文章: https://tools.ietf.org/html/rfc4038 https://github.com/WeMobileDev/article/blob/master/IPv6%20socket编程.md

定时器(timer)与时间轮(timewheel)

1 定时器(timer) 1.1 定时器使用场景 通常,定时是系统一个比较常用的事件。定时器要解决的问题是,隔一定时间(short-one)或者每隔一段时间(repeated)触发一个定时事件。 无论是系统还是应用,都会用到定时功能,例如, 系统层面: 屏幕刷新,TCP等 应用层面: 网络库实现的定时功能比如libuv 1.2 应用层定时器 应用层的定时通常有几种方式: 可以在某个循环(比如Windows GetMessage, DispatchMessage后面)判断时间,通常循环里可能会sleep一下,或者有类似poll,wait之类的超时设置; 借助操作系统提供的timer函数(POSIX timer函数或者windows timer消息),或者系统提供的定时任务如crond; 利用poll相关函数,借助timerfd等(linux); 数据结构方面,可以使用链表或者堆。 1.3 系统层定时器 系统定时器有低分辨率定时器,也有高分辨率定时器。 低分辨率定时器一般为毫秒级,典型分辨率为4毫秒。通常采用timer wheel实现。 高分辨率定时器可以达到纳秒级。通常采用红黑树实现。 底层使用时钟硬件(如HPET)提供的时钟中断来提供tick。 2 时间轮(timewheel) timewheel思想十分简单。想象我们的时钟,分辨率为秒,能实现从1秒到43200(12*60*60)秒的定时。然而定时轮并不需要12*60*60大小的数组,只需要用到12+60+60=132个大小的数组。 3 参考 《Professional Linux Kernel Architechure》

基于java nio的server设计

最近由于业务需要,写了一个 java server用来与我们的游戏服务器实现交互。 server只实现了最基本的功能: 维护多个长连接,发送与接收消息;连接建立及断开(主动与被动)。 在实现的过程中,最有意思的是java nio里的buffer,但我认为这是一个失败的设计。 java nio buffer三个主要的属性,position, limit, capacity. 通常来讲,传统的ringbuffer都会有一个read index和write index, 但buffer nio将两者统一为postion,然后弄出了读写模式切换的概念。 当从buffer里取出数据,即buffer.getXXX或者channel.write(buffer), 当往buffer里放入数据,即buffer.putXX或者channel.read(buffer), 的前后,经常要考虑模式的切换,比如调用flip,这样的设计增加了复杂性,对库的使用者带来困难(笔者才疏学浅,一直疑惑他们为什么这么设计,求高人指教),这本质上是因为position属性既要当作readindex来使用,又要当作writeindex来使用。 另外一点就是由于postion的大小不能超过limit和capacity, 导致使用的过程中经常需要compact, 每次compact会导致额外的内存拷贝;传统的ringbuffer会在writeindex < readindex在的时候才可能涉及到额外内存的拷贝。 也难怪,netty里抛弃了这种设计。

关于shadowsocks

平时其实很少使用VPN,多是Mac上SSH+Socks代理,Windows上就myentunnel+Socks代理。近来工作原因,手机上需要VPN才用的较为频繁,然而最近经常不好使了,  换了几个,一直都不太稳定,原因嘛你懂的。 于是在自己国外的VPS上搭建了一个VPN,用的是shadowsocks搭建的服务器. 客户端的话Mac,  Android , Windows应该都有免费的,iPhone上现在要花16元。 搭建好,用的是443端口。一天之后,发现不行了,然后换了个端口,现在已经流畅运行好几天了,很开心:) 一般的翻墙,通过设置浏览器http代理或者socks (5)代理就可以了。shadowsocks显然做的更多。 出于习惯,想了想这个自己弄应该怎么实现。去看了下代码,服务端用的python,几千行代码挺简洁的; 客户端需要解决的问题复杂些, 涉及到TCP/IP协议栈。